If it's not what You are looking for type in the equation solver your own equation and let us solve it.
49a^2-35a-6=0
a = 49; b = -35; c = -6;
Δ = b2-4ac
Δ = -352-4·49·(-6)
Δ = 2401
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2401}=49$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-35)-49}{2*49}=\frac{-14}{98} =-1/7 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-35)+49}{2*49}=\frac{84}{98} =6/7 $
| 9u+20=15u+14 | | w+23=-38 | | 9y+3y-10y=4 | | -7x+(-35)=31 | | q8=5 | | 4x-28+7=4x-21 | | (d-8)/9=5 | | 2z+17=z+20 | | -7g=-21 | | -5x+2+2x+4=3x+8 | | d+144=8 | | k/6+38=47 | | 7=(-w/8) | | -2c=90 | | -1.4+5u=11.1 | | 2^x-4=4x+8 | | 14d+4d+3d-17d-2d=12 | | 6t-100=t+30 | | v+1019=2 | | 123=249-x | | (n-49)/7=7 | | y/18.75+8=11 | | -3(x-3)-1=3x+8 | | u-u+5u=15 | | 1=w/5 | | 3(4x+4)=12x+4 | | 4y+24=y+27 | | 9=s/4+5 | | 2z-z+4z+4z=9 | | 3(4n+5)= | | 206=145-x | | u+10/7=6 |